
PMM U.S.S.R.,Vol.50,No.3,pp.286-290,1906 OOLl-8928/86 $lo.Cioio.C.X 
Printed in Great Britain 1987 Pergamon Journals Ltd. 

DIFFRACTION OF KELVIN WAVES IN A ROTATING SEMIBOUNDED BASIN 
CONTAINING A SEMI-INFINITE WALL* 

V.I. PUS 

The Wiener-Hopf method is used to obtain the exact solution of the 
problem of Kelvin wave diffraction in a rotating semibounded basin 
containing a semi-infinite wall. The solution is analysed asymptotically 
and numerically. The nature of the waves propagated in the basin is 
discussed. 

1. Formulation of the problem, In the basin - M <I< f 00, - 00 <y< a, 
located in a flat earth, rotatinq counter-clockwise with angular velocity 20, letthere be a 

Fig.1 

semi-infinite wall y = 0, -&<s<O (Fig.1). The depth of 
the basin is constant and equal to h. The axis of rotation is 
perpendicular to the (s,y) plane and passes through the 
origin (0, 0). 

We consider the steady wave motions of a fluid surface in 
the basin, i.e., we assume that the rise 5 (z,y,t) depends har 
monically on time, E(z,g) sxp(--iot). We will consider the case 
when 0>2w. In the linear theory of long surface waves /l/, 
the fun&ion E (z(g) is the solution of the Helmholtz equation 

(A + x”) % (5, y) = 0, x* = (u2 - 4d)/(gh) 
where g is the acceleration due to gravity, and A is the two- 
dimensional Laplace operator. 

Assume that a Kelvin wave of unit amplitude (1.1) propagates 
in the channel formed by the infinite and semi-infinite walls: 

Eo k !/I = exp &lx 5 - zq%y) (1.1) 

We shall study the wave motions in the basin which are excited when this wave is diffracted 
at the rib of the semi-infinite wall. 

We divide the basin into two domains, see Fig.1. In domain 1 (- m<z<+c%O<y<4 
we write the total amplitude of the rise as zof &, where &, are the incident, and 6x the 
diffracted, waves. In domain 2 (-oo<z<+m,-m<<YO) we denote the total amplitude 
of the rise by Es. For unknown functions fi(j = 1, 2) we obtainthe following problem: to find 
the solutions of the equations 

(A + ~"1 51 (r, Y) = 0 (j = 1, 2) (1.2) 

which satisfy the boundary conditions on the walls in contact with the fluid, and the conditions 
for continuity of the normal component of the velocity and rise on the continuation of the semi- 
infinite wall: 

zJg (s, a - 0) + vi (5, c4 - 0) = 0, - 00 <x < -i- m (I.31 
U& (i. 0 + 0) -I- VI (5, 0 i 0) = 0, v* (z, 0 - 0) = 0, 
- =<x<o 
ug (P, 0 + 0) 4 Ul (3, 0 + 0) = Us (z, 0 - O), 0 <x < -I- 00 0.4) 
Eo (z, 0 -i- 0) + %I (2, 0 + 0) = %a (2, O-O), oc s < + OLJ 

Here, v,(s,y) is the fluid velocity component, parallel to the y axis and connected with 
Ei(s,u) by the relation 

ui(z,Y)=-~(z~-ti~)L(5rY) 

Finally, the diffracted waves must satisfy the condition on the rib /2/ 

$5) 
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and the following radiation condition: the solution at infinity must contain only divergent 
waves. 

It can be shown that there is a unique solution of problem (l.l)-(1.6) in the class of 
bounded functions. 

2. The system of paired integral equations and its solution. We shall solve 
problem (l.l)-(1.6) by the Wiener-Hopf method /3/. For this, we assume that the wave number 
x has a small positive imaginary part, i.e., x = xg i_ ie, and we let 8 tend to zero in the 
final results. Theintroductionofthe small~maginaryte~into x corresponds to assuming energy 
dissipation in the fluid. 

we will introduce the unknown functions A (a), B (cc), 2 (a), 2, (a), 2, (a) of the complex 
variable CL by the relations 

&(z,Y)=+f exp(iaz) [A(a)siny(y-a)C B(a) sinyy] da f2.V -0J 

.!$ (d, a) = +r exp (ias) 21 (a) da, ga (*, 0) = jm exp (ias) 2s (a) da 
-m --m 

( 
A(+=-~, B(a)=-$@; 

~":($-a~)l/., lmv>O) 

From the no-flow condition (1.3) on the wall Y = a we obtain 

21 (a) = 1% (a) 
y cos ye + al sin ya (2.2) 

We introduce the new unknown function V(a) of the complex variable c$ by 

On applying (1.5) 
(2.3), the dependences 

vl (x,0) = - + +f exp (iaz) fi (cc)da 
-D3 

(2.3) 

to the integral forms for rises (2.11, we obtciin in the light of (2.2), 
of Z(a) and Z,(a) on V(a) 

Z(++- (2.4) 

&(u)=i 

Substituting the integral forms of the rises in the second boundary condition (1.4) and 
using the no-flow condition on the semi-infinite wall., we arrive at the system of paired 
integral equations 

‘s exp(iaz)V(a)da=O, s<o 

L 04 = * exp (- iya) 

(2.5) 

To solve this system, we factorize the kernel L(a), i.e., we write it as L(a) = L+(a) 
4 (a), where the function L+(a) is analytic and has no zeros in the upper half-plane of a, 
while &_(a) has the same properties in the lower half-plane of a. The functions sinya/(ya) 
and exp(-iya) have been factorized in the literature, see e.g., /3, 4/, so that we shall just 
quote the final result for the kernel L(a): 

where C = 0,57721... is Euler's constant. 
We will seek the solution of system (2.5) inthe form 

V (a) = Q/L_ (a) (2.7) 
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where Q is an unknown constant. With this choice of V(a) the second equation of (2.5) is 
satisfied identically. To find the constant Q, we substitute (2.7) into the second equation 
of (2.5) and, after evaluating the resiude at the pole CL = I]%, we find 

Q= xa 
nrlL+(V) 

(2.8) 

our solution (2.71, (2.8) satisfies rib condition (1.6), which, by the theorem on the 
relation between the asymptotic forms of a function and its Fourier transform /5/, takes the 
form for the function V(a) :V (a)- a-"* as a-+co.~owi.ng the explicit expression for V(a), we 
can obtain expressions for the rises of the fluid surface in the basin. 

3. Expressions for the rises. We start by studying the rise in the channel -CO < 
.r< 0, O<y<a. Starting from (2.1), the following integral form can be obtained for the 
rise in the channel: 

exp (ia..r) [ycos v(v - a)- alsiny(y - a)] 
sinycr(aa- +c*) V (a)da 

-Da 

To evaluate the integral in (3.i), it suffices to find the residues of the integrand 
at the simple poles -_I~x, ak (k = 1, 2, . . .). We obtain 

The first term in (3.2) describes the reflected Kelvin wave (KW), travelling in the 
channel, while the infinite sum refers to progressive and damped waves. Progressive waves 
correspond to real ak and exponentially damped waves to imaginary art. Given the dimensionless 
channel width xa, the number of progressive waves is equal to the integral part of xain. 

Let us turn to domain 2. The rises in it are described by the integral relation 

(3.3) 

The integrand in (3.3) has branching points fx and a simple pole -_rlx. For x< 0 we 
can use the residue theorem of /6/ and write the rise $z(x,y) as 

(3.4) 

The first term in (3.4) describes the KW, travelling in domain 2 in the negative x 
direction along the wall y = O,r<O, while the second term (the integral along the sides of 
the cut S to the branching points) describes the complex wave motion and can be computer- 
evaluated by numerical integration for any point of the domain. 

On estimating integral (3.3) for the rise at a great distance compared with the wavelength 
from the channel input by the saddle-point method /7/, we obtain the following for the surface 
rise remote from the rib of the semi-infinite wall: 

eP{~,0}-~~Y(6)expli(xr-_)], xr>i 

Y(e)= 
609 ev (X sin 8) 
cos8+ilsinCl ’ x=rsin8, y=--rcos8 

.(3.5) 

The same estimate can be made for the rise in domain 1 outside the channel. It is clear 
from (3.5) that, remote from the rib of the semi-infinite wall, the rise is a cylindrical wave 
with an angular distribution of the amplitude jY(O) 1. It must be said that, for a<0 , a 
term describing the KW has to be added to the cylindrical waves in (3.5). 

Let us now describe the wave picture as a whole. The KW travelling in the channel reaches 
the rib of the semi-infinite wall, swings round at it, and departs to infinity with reduced 
amplitude on the other side of the wall. Apart from this wave, cylindrical waves travel 
outside the channel. In the channel itself, a system of natural waveis excited, namely, the 
reflected KW, a finite number of progressive waves, and an infinite number of waves which are 
exponentially damped on moving deeper into the channel from its open end. 
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The problem of the diffraction of KW travelling along the infinite wall in the basin 
shown in Fig.1 was solvedin /8/ by the Wiener-Hopf method in John's interpretation. It must 
be said that, in /8/, as also in /9/ on a similar topic by the same author, it was claimed 
that the amplitude of the n-th progressive wave in the channel tends to infinity as a,,-.O, 
i.e., as xa-+~ln, and that the expressions for the rises are valid when xa is not too close 
to nn, because, in expressions (3.2) for therises of the progressive waves, the wave parameters 

a, occur in the denominator. However, in the numerator we always have the factor (sin %a)"*, 
which tends to zero as %abnn at the same rate as a,. Thus the amplitude of any progressive 
wave in the channel is always finite, whole solution (2.7), (2.8), (3.2) is valid for any xa. 

Interpretation of results of a numerical analysis. The amplitudes of the waves arising 
in the basin were studied numerically. The infinite product in (2.6) was replaced by a finite 
product with N factors. It was shown in /lo/ that the relative error of this reduction does 
not exceed Ia21a2/(n2N), so that, for values of aa/rr- 1, the error is under 1% when N> 100. 

In Fig.1 the broken curves 1 and 2 are respectively the amplitude of reflected KW and KW 
travelling in domain 2, plotted against the channel width xa It can be seen that, for small 
r.a the KW, on reaching the open end of the channel, is almost completelyreflected from it. 
As xa increases, the reflected KW amplitude falls sharply, while the & amplitude in the 
"shadow" domain tends to its limit, equal to Zql(i+q) /ll/. The explanation is that, as 
%U++CO, our problem transforms into the KW diffraction problem at a semi-infinite wall in an 
unbounded rotating basin. 

The continuous curves plot the amplitudes of several first progressive waves against the 
channel dimensionless width xa.. As the width increases, with xa = nR (A = 1, 2,. ..), progressive 
waves appear in the channel. The values of the dimensionless width at which excitation of a 
new travelling wave occurs are called threshold values. At these threshold values there are 
typical breaks in the amplitude curves, linked with the redistribution of energy between the 
waves close to the threshold at which a new wave appears. The effect of reconstruction of 
waves motions on the birth of a new travelling wave is familiar in optics /12/, electrodynamics 
/13/, and nuclear physics /14/, where it is known as a threshold effect. The threshold nature 
of diffraction of long surface waves in a rotating basin was discussed in detail in /lo, 16-18/. 

Our present results can be used in geophysical calculations when studying the motion of 
tidal waves, as e.g., in /15/. 

The author thanks V.A. Belyakov for useful discussions. 
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INFLUENCE OF DISSIPATION ON THE PROPAGATION OF 
A SPHERICAL EXPLOSION SHOCK WAVE* 

V.N. LIKHACHEV 

The problem of the propagation of an explosion shock wave in a weakly 
compressible viscous medium at low Reynolds numbers is solved by the 
method of asymptotic expansions. The influence of non-linear terms in 
the principal approximation is studied, and the law of wave amplitude 
damping and its profile are found. 

1. Formulation of the problem. The system of equations that describes the spherically 
symmetric motion of a compressible viscous fluid is /l/ 

(1-l) 

where the bar refers to dimensional quantities, 9,T are the entropy per unit mass and the 
temperature, c,p, Z are the coefficients of shift, spatial viscosity, and thermal conductivity. 
Knowing the internal energy as a function of p and T we can find the dependences p@,5) and 

T cp, S). These relations close system (1.1). 
The action of the explosion products on a fluid is modelled by a piston, moving according 

to the law Z = q(t), where ?j (O)= z,, Q' (0) = 0, (Do is the shock initial velocity). 
We will introduce the dimensionless variables 

where PO and T, are the density and temperature of the undisturbed medium. 
The medium is assumed to be weakly compressible. We will introduce the small parameter 

E = (&J/ap).-l in the undisturbed medium, and solve the problem in the range of parameters 
ensuring small density disturbances: p = 1 $ ep. For inviscid flow, p is the same in the 
principal approximation as the dimensionless pressure /2/. 

We shall seek the principal term of the expansion of the solution with respect to the 
small parameter e. Neglecting terms in (1.1) that are obviously taken into account in later 
approximations, we obtain the system 

*Prikl.Ifatem.I#ekhan.,50,3,384-393,1986 


